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AFIT-ENG-14-M-34
Abstract

One of the United States Air Force missions is to track space objects. Finding planets,

stars, and other natural and synthetic objects are all impacted by how well the tools of

measurement can distinguish between these objects when they are in close proximity. In

astronomy, the term binary commonly refers to two closely spaced objects. Splitting a

binary occurs when two objects are successfully detected. The physics of light, atmospheric

distortion, and measurement imperfections can make binary detection a challenge.

Binary detection using various post processing techniques can significantly increase

the probability of detection. This paper explores the potential of using a multi-hypothesis

approach. Each hypothesis assumes one two or no points exists in a given image. The log-

likelihood of each hypothesis are compared to obtain detection results. Both simulated and

measured data are used to demonstrate performance with various amounts of atmosphere,

and signal to noise ratios. Initial results show a significant improvement when compared

to a detection via imaging by correlation. More work exists to compare this technique to

other binary detection algorithms and to explore cluster detection.
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BINARY DETECTION USING MULTI-HYPOTHESIS LOG-LIKELIHOOD,

IMAGE PROCESSING

I. Introduction

Comparing statistical hypotheses to determine the likelihood of a given event is a

proven technique used in many fields, particularly digital communication. The

application of a multi-hypothesis test algorithm to the detection of binary stars or other

space objects is an area of new exploration. This thesis will explore the usefulness of using

a multi-hypothesis technique to resolve close binary objects in space. The first task is

to derive a multi-hypothesis algorithm specifically for binary detection and then provide

results for various simulated imaging conditions as well as measured binary images.

Simulated results will be compared with another technique to explore potential detection

improvements.

1.1 Binary detection

The ability to discriminate between closely-spaced objects in space has and continues

to be a challenge. Finding planets, stars, and other natural celestial objects, as well as

trying to keep track of satellites and space debris are all impacted by how well the tools of

measurement can distinguish between these objects in close proximity. In astronomy, the

term binary commonly refers to two stars in the same system. Splitting a binary occurs

when two stars are successfully identified. Some binaries are easily split using basic

equipment. As the source intensity, object distance, and/or atmospheric distortion varies,

the binaries will appear as just a single object. In this paper, the term binary refers to any

two closely spaced objects. Several image post processing techniques have been developed
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to increase spatial resolution and/or look for patterns common to binary objects. Most of

the commonly used methods today focus on image reconstruction and deblurring. This

thesis will show that if an image’s Point Spread Function (PSF) is known and the source is

a single or double point source, the log-likelihood of the most probable hypothesis provides

a statistical comparison of how likely a blurred image contains a binary.

1.2 Space situational awareness

One of the United States Air Force missions is to track space objects, particularly

of the synthetic kind. Due to the physics of spatial resolution, it is extremely difficult to

resolve satellites in geosynchronous orbit (35,786 km). At this distance the size of a satellite

is typically smaller than one pixel on a high quality Charge-Coupled Device (CCD) camera.

For example, if a satellite in geosynchronous orbit is 15 meters wide (the length of a full

size school bus) and a telescope with an aperture of 4 meters and focal length of 64 meters

is focused on it, the size on the CCD would be:

size =
(sat.size)( f ocal.length)

distance
=

(15m)(64m)
35, 786, 000m

= 2.64µm. (1.1)

This is much smaller than a typical CCD pixel used in astronomical telescopes. This is also

smaller than the Raleigh criteria for spatial resolution for this same setup [14]:

Resolution ≈ (1.22)(λ)( f /#) = (1.22)(550nm)(16) = 8.48µm (1.2)

where λ is the wavelength of light and f /# is the f-number, which is the focal length divided

by the diameter of the optical system. The atmosphere will further blur this image and after

a certain amount of exposure time the image will typically be a few to several pixels of

light. At this distance, it can be extremely difficult to tell if there is one, two or several

objects in the spot of light.

The multi-hypothesis method discussed in this thesis has the potential to increase

the probability of correctly detecting binaries at geosynchronous orbit and other scenarios

important to the USAF.
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1.3 Research objectives

The question posed in this thesis is how well, if at all, can a multi-hypothesis model

correctly detect a binary pair in a blurred image? To answer that question four research

objectives are documented.

First, a statistical model is derived in Section 3.1. Here the derivation of algorithms

for zero, one, and two point sources are shown.

The second objective is to successfully implement the mathematical algorithms into

a software simulation model. This model includes atmospheric effects, background

noise, and creates a test environment to work out threshold parameters that maximize the

probability of detection while minimizing the false alarm rate. The simulation will be done

in Matlab™and is covered in Section 3.2.

Once the binary hypothesis method is successfully implemented and results measured,

it is important to compare them to another modern technique. The third objective is to

compare results from another image detection method, specifically imaging by correlation

with a threshold set for binary detection. Section 3.3 walks through an implementation of

imaging by correlation in Matlab™and results are provided in Chapter 4.

The final objective is to use measured imagery data where the number of objects is

known and see how well the algorithm correctly detects when a binary is present. The

imagery data used is focused on a satellite in geosynchronous orbit with a dim star passing

by at various distances, including the situation where the two appear as a single object.

The decision to select a binary from the algorithm is compared against the truth data and

presented in Chapter 4.

1.4 Organization

This research document is organized in accordance with AFIT’s thesis guidelines.

Chapter 2 will discuss current methods used to detect binaries and contrast them with the

proposed, unpublished, multi-hypothesis binary detection method. Chapter 3 provides the

3



derivation and simulation methods used to meet the thesis objectives outlined in the pre-

vious section. Chapter 4 contains the results of several of the simulation tests as well as

the results of processing measured data. Chapter 5 discusses conclusions and opportunities

for continued research and operational testing. Complete references of all sources cited are

contained in the bibliography. Every attempt has been made to use consistent variables to

enhance readability.
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II. Background

High spatial resolution of an imaging system is key to achieving detection of binary

objects. A standard telescope system cannot achieve diffraction-limited resolution

due to factors such as atmospheric and optical aberration. Several techniques have been

developed to close the gap between diffraction-limited resolution and a system’s actual

resolution. This chapter will discuss some of the most common post-processing techniques

to increase spatial resolution in astronomical imaging. Additionally, a brief overview of

multi-hypothesis statistics is provided.

Binary objects do not all behave in the same way. Although the imaging techniques

discussed in this chapter can be used on all binaries, specific methods have been developed

to look for planets and binary star systems. As gravitational fields of large planets and stars

interact, a periodic movement, often referred to as wobble, can be detected [23]. Other

indicators such as periodic eclipsing and Doppler-like wavelength patterns can infer the

presence of a binary [6]. These methods have been successful on a subset of binaries

but cannot be applied to binaries in general. This paper will not focus on gravitational,

orbital or other spectroscopic measurements techniques, rather the focus will be on post-

processing techniques useful in detecting any binary.

Aside from the natural effect of diffraction, the earth’s atmosphere plays a large

role in limiting spatial resolution. Virtually all real-time and post-processing de-blurring

techniques require an understanding of how the atmosphere is changing the light. Because

we know what a diffraction-limited point source looks like, we can compare it to a

measured point source through the same atmosphere and use that information to correct

the atmospheric distortion [14][12]. Lightwaves from distant point source(s) can be

estimated as plane waves right before reaching earth’s atmosphere [14]. The atmosphere

will randomly distort this wave and the distortion can be measured by a wavefront sensor

5



[33]. Unfortunately, it is impossible to have a perfect natural point source everywhere

in the night sky at visible wavelengths [11][37][38][39]. To overcome this limitation,

one or more lasers can be used to create point sources, or guide beacons, in the area

of interest [7][9][10][11][15][37]. A wavefront sensor takes the point source, or guide

star, information and determines corrective adjustments then sends that data to an adaptive

optics system [32]. Real world performance of adaptive optics can vary from near

diffraction limited correction to no visible improvement depending on a host of factors

[1][8][16][17][28][36][40].

The need for a valid point source cannot be understated since it is foundational to

adaptive optics and the post-processing techniques described in this chapter. A great deal

of research still remains in the field of generating and measuring quality point sources.

Although adaptive optics is an important technique in moving closer to diffraction limited

imaging, it is not currently a practical solution for all imaging sites. Having one or more

image post-processing software solutions is a relatively affordable way to augment or

supplement adaptive optic systems. It is the area of software post-processing that this

paper will focus from this point on.

The following sections will discuss two of the most common post-processing methods

for binary detection, deconvolution and speckle interferometry. Section 2.2 finishes the

chapter with a brief and general look at how multi-hypothesis statistics can be used in

binary detection.

6
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Figure 2.1: Basic adaptive optic process.
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2.1 Post-Process Imaging

Image post-processing can be an effective and affordable way to increase image

resolution. This section will look at two deconvolution methods and a speckle

interferometry technique useful for visual binary detection. These processes attempt to

reconstruct a higher resolution image from measured data. It is important to note that the

multi-hypothesis method does not produce a reconstructed image so it is a fundamentally

different approach but still fits within the post-processing category of binary detection.

2.1.1 Atmospheric Turbulence.

Before discussing specific imaging techniques it is important to explain how

atmospheric turbulence is modeled in this thesis. The most common methods utilize

the approximation that atmospheric effects can be represented as wavefront errors in the

pupil plane. If A(u, v) represents the two-dimensional, clear pupil and W(u, v) represents

wavefront error as a function of position with respect to a fixed Cartesian coordinate system,

(u, v), then the atmospherically blurred image, i(x, y), can be represented as:

i(x, y) =
∣∣∣∣F {

A(u, v)e jW(u,v)
}∣∣∣∣2 (2.1)

where F is the symbol denoting the Fourier Transform. The wavefront error as a function

of position, commonly called a phase screen, can be simulated in various ways. One of the

most common methods of phase screen generation utilizes Power Spectral Density (PSD)

models, such as von Kármán and modified von Kármán [31]. These are referred to as

Fourier Transform (FT) based methods [31]. The model used in the simulations of this

paper are based upon another method that uses Zernike polynomials to generate phase

screens.

It has been shown that the wavefront error, W(u, v), can be expanded with basis

functions based on the geometry of the aperture [33]. Common basis functions include,

Zernike circular, Zernike annular, Gaussian-circular, and Gaussian-annular. A Zernike

circular set of basis functions were used in this paper to match the geometry of the

8



simulated aperture. Expansion of the wavefront error, or phase screen, using Zernike

circular polynomials is described below. Note the shift to polar coordinates where,

ρ =
√

u2 + v2 and θ =arctangent(u, v), also note u and v represent grid locations in the

pupil plane. Zernike expansion equations are as follows:

W(u, v) = Wz(ρ, θ) =
∑

i

αiZi(ρ, θ)

Zi(ρ, θ) =


√

2(n + 1)Rm
n (ρ)Gm(θ) if m , 0

R0
n(ρ) if m = 0

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s(n − s)!
s!( n+m

2 − s)!( n−m
2 )!

ρn−2s

Gm(θ) =


sin(mθ) if i odd

cos(mθ) if i even

(2.2)

where combinations of the index variables m and n will produce a specific aberration effect,

also the index i is a numerical index. Table 2.1 below shows the mapping of the first 10

Zernike circular polynomials and the index mapping of m, n, and the numerical index, i.

The wavefront error, W(ρ, θ) can be measured or simulated. It is worth repeating that

the wavefront error is using Zernike polynomials:

Wz(ρ, θ) =
∑

i

αiZi(ρ, θ). (2.3)

To simulate phase screens we need to generate the coefficients, αi, to weight each

polynomial at a given polar coordinate, ρ, θ. To do this the work of Roddier was utilized,

who demonstrated that by using a Cholesky decomposition of the covariance matrix of the

Zernike coefficients, statistically accurate atmospheric phase screens can be generated [30].

The following discussion will provide a basic explanation of this method.

First we note that α in Equation 2.3 will be an N × 1 vector where N is the number

of Zernike polynomials used to form the basis. Given the covariance matrix, Ci, j, for two

Zernike polynomials and associated amplitudes, αi and α j:
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Table 2.1: First 10 Zernike Circular Polynomials [33].

i m n Zm
n (ρ, θ) Name

1 0 0 1 piston

2 1 1 2ρ cos(θ) x tilt

3 1 1 2ρ sin(θ) y tilt

4 0 2
√

3(2ρ2 − 1) defocus

5 2 2
√

6ρ2 sin(2θ) y primary astigmatism

6 2 2
√

6ρ2 cos(2θ) x primary astigmatism

7 1 3
√

8(3ρ3 − 2ρ) sin(θ) y primary coma

8 1 3
√

8(3ρ3 − 2ρ) cos(θ) x primary coma

9 3 3
√

8ρ3 sin(3θ) y primary trefoil

10 3 3
√

8ρ3 cos(3θ) x primary trefoil

11 0 4
√

5(6ρ4 − 6ρ2 + 1) x primary spherical

Ci, j = E[αi,α j] (2.4)

C = LLT (2.5)

where LT denotes the conjugate transpose of the lower triangular matrix L. The covariance

matrix generated from two Zernike polynomials Zi and Z j has been derived by Knoll

[27][30]:

Ci, j = E[αi, α j] =
KZiZ jδZΓ[(ni + n j − 5/3)/2](D/r0)5/3

Γ[(ni − n j − 17/3)/2]Γ[(ni − n j − 17/3)2]Γ[(ni − n j − 23/3)/2]
(2.6)

where:

KZiZ j =
Γ(14/3)[(24/5)Γ(6/5)]5/6[Γ(11/6)]2

2π2 × (−1)(ni+n j−2mi)/2
√

(ni + 1)(n j + 1) (2.7)

and:

δZ = [(mi = m j)]
∧

[parity(i, j) ∨ (mi = 0)]. (2.8)
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If we generate a vector of zero mean with unit variance uncorrelated numbers, n, then

we can solve for the amplitudes, α, that weight each Zernike polynomial by applying the

properties of the Cholesky decomposition such that:

L = C
1
2 (2.9)

and:

α = Ln. (2.10)

Thus, given a randomly generated zero mean, unit variance vector n, the Freid seeing

parameter, r0, the diameter of the aperture, D, and the number of Zernike polynomials

desired, a wavefront error phase screen can be calculated. Again, this is the method used in

all simulation conducted as part of this thesis. For more information on this method please

refer to [30].

2.1.2 Deconvolution.

Deconvolution is a de-blurring technique widely used in many fields including

astrophotography. Basically, if an image is distorted with spatially invariant blur, e.g.

the same atmospheric distortion is applied to the entire image, it can be modeled as the

convolution of the measured point spread function and the true image [19]. Or, using the

Convolution Theorem, the Fourier Transform of the image is equal to the Fourier Transform

of the object multiplied by the Optical Transfer Function (OTF):

i(x) = o(x) ⊗ h(x)

F {i(x)} = F {o(x)} × F {h(x)}.
(2.11)

In this equation, ⊗ is the convolution operation. Typically, the only information known

is the blurred image and an imperfect point spread function–this is known as blind

deconvolution [19]. By using multiple frames with their respective measured point spread

functions the number of solutions to the blind deconvolution can be reduced [35]. This

is known as multiframe blind deconvolution and is an important technique used for image
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restoration [5][35].

In 1970, Antoine Labeyrie observed that the speckles in a short exposure image

contained more spatial frequency data when compared to a long exposure image [20].

The processes that use this speckle information to reconstruct an image is referred to as

speckle imaging. There are two main steps to speckle imaging. First, to estimate the object

and reference star intensity and second, to recover the phase that is lost from the first step

[3]. Step one will be described in this section and two methods of phase recovery will be

covered in the next two subsections.

Speckle interferometry is a technique used to find the expected value of the modulus

of the Fourier Transform of the object. If the source object happens to be two points the

cosine fringe patterns can be seen (see Figure 2.2).

If αs represents the angular separation of a binary pair and, λ
D ≤ αs ≤

λ
r0

, where λ
D

is the approximate smallest angular separation two points are detectable in a diffraction

limited environment and λ
r0

is the smallest approximate angular separation two points can

be detected through atmospheric turbulence then speckle interferometry can be useful [31],

where r0 is the Fried’s seeing parameter and λ is the wavelength of light. If αs <
λ
D , then

the angular separation is too small to resolve. If αs >
λ
r0

, then speckle interferometry will

not improve the resolution. It is therefore assumed going forward that the binary separation

angle, αs, falls within the range above, where deconvolution is helpful.

First consider the irradiance incident on a detector. If the imaging system is properly

focused on the object, we have the incident irradiance equal to the object irradiance as

observed from geometry alone convolved with the PSF:

d(x) =
∑

y

h(x − y)o(y) (2.12)

where d(x) is a single measured short exposure image, h(y) is the PSF, and o(y) is

the diffraction-limited object irradiance. If the source object is a binary, let o(y) =
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o1δ(y) + o2δ(y − y1), where δ is the Dirac function and o1 and o2 are the intensities of

the binary points. Taking the convolution and applying the sifting property of integrating a

Dirac function yields:

d(x) =
∑

y

o1h(x − y)δ(y) +
∑

y

o2h(x − y)δ(y − y1)

= o1h(x) + o2h(x − y1).

(2.13)

Now take the Fourier transform of d(x):

F {d(x)} = o1H(f) + o2H(f)e− j2πy1 fx . (2.14)

Here we take the modulus squared of the result:

|F {d(x)}|2 =
(
O1H(f) + O2H(f)e− j2πy1 fx

)
×

(
O1H(f)∗ + O2H(f)∗e j2πy1 fx

)
= O2

1|H(f)|2 + O2
2|H(f)|2 + 2 × REAL

{
O1O2|H(f)|2e− j2πy1 fx

} (2.15)

noting that REAL
{
e− j2πy1 fx

}
= cos (2πy1 fx) reducing Equation 2.15 to:

|F {d(x)}|2 = O2
1|H(f)|2 + O2

2|H(f)|2 + 2O1O2|H(f)|2 cos(2πy1 fx) (2.16)

divide both sides by |H(f)|2, yields:

|F {d(x)}|2

|H(f)|2
= O2

1 + O2
2 + 2O1O2 cos(2πy1 fx). (2.17)

Let Q(f) = |F {d(x)}|2 − K, where K is the photon noise bias governed by Poisson statistics

and Q(f) is the unbiased speckle interferometry estimator [13]. The signal-to-noise ratio,

S NRQ, of Q(f) improves as follows:

S NRN
Q(f) =

√
N × S NRQ(f) (2.18)

where S NRN
Q is the signal-to-noise ratio of N averaged independent realizations of Q(f)

[31]. Values of N, the number of short exposure images, range from a few hundred to
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several thousand [31]. Assuming N > 1, it is necessary to take the expected value of both

the numerator and denominator of Equation 2.17:

E{|F {i(x)}|2}
E{|H(f)|2}

= O2
1 + O2

2 + 2O1O2 cos(2πy1 fx) (2.19)

where i(x) is the detection plane irradiance of N images, H(f) is the OTF and y1 is the

separation of the binary stars, O1(f) and O2(f) is the image spectrum of the binary stars.

Plotting the results of Equation 2.19 can reveal a cosine pattern if the angular separation of

the binary pair is large enough [14][20][31].

The following is a simulated example of speckle interferometry using 200 independent

images of two point sources.

(a)

   P1:124,128 →    ← P2:132,128

110 120 130 140 150

105

110

115

120

125

130

135

140

145

150

(b)

50 100 150 200 250

50

100

150

200

250

(c)

50 100 150 200 250

50

100

150

200

250

(d)

   113,128 →    ← 145,128

50 100 150 200 250

50

100

150

200

250

Figure 2.2: Speckle interferometry simulation with 200 independent frames. (a) The binary

source image, (b) the simulated average of short exposure images, (c) speckle transfer

function, (d) speckle transfer function showing fringe spacing.

In Figure 2.2 (a) the binary source image is shown, note the separation is 8 pixels; (b) is

the simulated average of 200 short exposure images; (c) is the calculated unbiased speckle
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interferometry estimator, Q(f) (log scale); finally, (d) shows the log scale of Q(f)
E{|H(f)|2} . The

binary separation from the original image, y1 can be calculated from the results. First

looking at Equation 2.19, the period of the fringe pattern detected depends on cos(2πy1 fx).

Where y1 is a 2-tuple and denotes the location of the second binary point in the image plane

and fx is the size of a pixel in the frequency plane. The peak-to-peak period in pixel count

of the cosine fringes in Figure 2.2 (d) is 32:

P = Period =
1

f requency
=

1
y1∆ fx

∆ fx =
1
N

(2.20)

where N = 256, the number of pixels and ∆ fx is the sample size in the frequency plane.

P = Period =
256
y1

from measurements, P=32 pixels :

32 =
256
y1

y1 =
256
32

= 8 pixels.

(2.21)

Looking at the simulation parameters, 8 pixels was the binary separation used to generate

the image. The actual physical interpretation of 8 pixels of separation will depend on the

characteristics of the imaging system and distance to the object being viewed. Thus, by

measuring the pixel separation of the binary fringe pattern an estimation can be made as to

the actual binary separation in the object plane.

Observing these cosine fringe patterns is a proven method of finding binary point

sources. However, as mentioned before, the phase data is lost after taking the second

moment of the image spectrum. This phase data needs to be recovered for image

reconstruction. The next two subsections will discuss two common methods of phase

retrieval.
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2.1.2.1 Knox-Thompson.

As stated before, to properly reconstruct an image using spectral imaging the phase of

the source object needs to be recovered. The first technique commonly used is the Knox-

Thompson or cross spectrum method. Dr. K. T. Knox and B. J. Thompson published a

paper in the Astrophysics Journal in 1974 describing a method of recovering images from

atmospherically-degraded short exposure images [18][31]. This method is now called the

Knox-Thompson Technique or the cross spectrum technique. In their paper, they defined

the cross spectrum, C(f,∆f), as:

C(f,∆f) = I(f)I∗(f + ∆f) (2.22)

where I(f) = O(f)H(f) and O(f) is the object spectrum, and H(f) is the OTF [31][18].

The cross spectrum of the detected image is not directly proportional to the cross

spectrum of the object as a bias term needs to be accounted for to properly estimate the

phase [2][4][31]. If we assume individual pixels in the detection plane are statistically in-

dependent and the photon arrival is governed by Poisson statistics, then the unbiased cross

spectrum for a single measured image, d(x), can be written as [31]:

Cu(f,∆f) = D(f)D∗(f + ∆f) − D∗(∆f). (2.23)

The term D∗(∆f) is the conjugate of the image spectrum at ∆f, and is defined by:

D∗(∆f) =
∑

x

d(x)e− j2π∆f·x (2.24)

which will be different from image to image and needs to be subtracted out before taking

the average of the short exposure images. Each image also needs to be centered as the cross

spectrum method is not shift invariant [2][4][18][31].

Typical values of ∆f = (∆ f1,∆ f2), the spatial frequency offset, are, |∆f| < r0/(λd),

where r0 is the Fried seeing parameter, λ is the wavelength of the light and d is the distance

16



from the pupil plane to the imaging plane [2][31]. Taking the average cross spectrum over

multiple short exposure images yields the following equation [2][31]:

E[C(f,∆f)] = |O(f)||O(f + ∆f)|e j[φo(f)−φo(f+∆f)]E[H(f)H∗(f + ∆f)] (2.25)

where second moment of the OTF, E[H(f)H∗(f+∆f)], is the cross spectrum transfer function

and relates the object spectrum, O(f) to the cross spectrum. The cross spectrum transfer

function is real-valued, so the phase of the average cross spectrum is [2][4][31]:

φC(f,∆f) = φo(f) − φo(f + ∆f). (2.26)

The object phase, φo can be extracted from this equation. Let the offset vector in the x

direction be ∆ fx and the offset vector in the y direction be ∆ fy, that is ∆f = (∆ fx,∆ fy). The

phase differences generated by these offset vectors are [2][31]:

∆φx( fx, fy) = φo( fx, fy) − φo( fx + ∆ fx, fy) (2.27)

≈
∂φo(f)
∂ fx

∆ fx (2.28)

∆φy( fx, fy) = φo( fx, fy) − φo( fx, fy + ∆ fy) (2.29)

≈
∂φo(f)
∂ fy

∆ fy (2.30)

The partial derivatives form the orthogonal components of the gradient of the object phase

spectrum, Oφo(f). This angle data can be combined with the magnitude data retrieved from

speckle interferometry methods to reconstruct the image [2][31]. Calculating φo(f) can be

accomplished by the following equation:

φo(Nx∆ fx,Ny∆ fy) =

Nx−1∑
i=0

∆φx(i∆ fx, 0) +

Ny−1∑
j=0

∆φy(0, j∆ fy) (2.31)

where Nx and Ny are the number of pixels in the x and y direction in the image plane. For

the simulations in this paper, ∆ fx = ∆ fy = 1, which provides a small offset constant without

doing sub-pixel manipulations. Looking at Equation 2.31, each point in the reconstructed
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object phase, φo, can be obtained by taking the angle of the average cross spectrum in both x

and y directions and then summing along the x and y axis to the desired phase coordinate to

reconstruct [31]. Many summing paths can be taken to get to a particular phase coordinate.

In a noise free environment all paths to a particular point will yield the same result. In a

real-world system, each path will yield slightly different results depending on random noise

effects. It is, therefore, a standard practice to calculate the object phase at a particular point

by averaging the results of summing several paths to that point [2][31].

The result of implementing Equation 2.31 is an unwrapped phase 2D-matrix

containing the reconstructed object phase in the Fourier domain. To get the reconstructed

image, φo needs to be wrapped and then multiplied by the Fourier transform of the intensity

information obtained through, in this case, speckle interferometry. The following is a

simulated example of a basic implementation of the Knox-Thompson or cross spectrum

method. The reconstructed image is formed from the following equation:

o(x, y) = |F −1{|O|e− jφo}| (2.32)

where O is the modulus of the average object intensities calculated using speckle

interferometry and φo is the object phase recovered by the cross spectrum method and

o(x, y) is the reconstructed object.

Figure 2.3 shows the sum of 50 short exposure images of a binary point source with a

separation of 4 pixels on a 255 pixel square grid. Each image passed through a randomly

generated phase screen with an ro value of 30 cm to simulate atmospheric blur. Poisson

noise was added to the data calculated at the image plane. A focused telescope with a

square aperture of 1 meter was used for this simulation. Figure 2.4 is the result of my

implementation of the cross spectrum method described in this section when applied to the

image data from Figure 2.3.

18



Figure 2.3: Stack of 50 short exposure images, each simulated through a unique random

phase screen with ro = 30 cm.

Implementing a robust cross spectrum phase retrieval algorithm requires extensive fine

tuning to remove as much noise as possible. Please refer to Ayers work for more informa-

tion on implementation [2].

Reconstructing a higher resolution image is typically what is desired in astronomical

imaging. A major difference between the multi-hypothesis method and phase reconstruc-

tion is the focus on detecting binaries versus producing higher resolution images. One other

phase reconstruction method should be mentioned and that is bispectrum technique.

2.1.2.2 Bispectrum.

The bispectrum is another effective method used to reconstruct the phase of an image.

It is invariant to image shift, which is a valuable property when looking at multiple images

of potential binaries [2][22]. It is defined as [31]:

B(f1, f2) = D(f1)D(f2)D∗(f1 + f2). (2.33)

Note the phase of the object spectrum is contained in the phase of the bispectrum at three

points in frequency space (f1, f2, and f1 + f2) compared to the cross spectrum which needs

two points to reconstruct the object phase. Many different techniques have been and
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Figure 2.4: Result of cross spectrum method with ro = 30cm, original image (a), cross

section of original image (b), reconstructed image (c), cross section of reconstructed image

(d).

are continued to be published on how best to calculate the phase using the bispectrum

[2][21][24][25][26]. I will highlight one such method which is the unit amplitude phasor

recursive reconstructor.

To begin, the unbiased bispectrum for a single short exposure image is:

Bu(f1, f2, ) = D(f1)D(f2)D∗(f1 + f2) − |D(f1)|2 − |D(f2)|2 − |D(f1 + f2)|2 − 2K + 3Pσ2
n (2.34)
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where K is the bias caused by the random arrival of photons governed by Poisson statistics

and Pσ2
n represents additive noise caused by the imaging device [31]. The unbiased

bispectrum is calculated for each short exposure image and then the average bispectrum

is computed. The phase of the resulting mean bispectrum is:

φB(f1, f2) (2.35)

which is equal to [2][22][31]:

φB(f1, f2) = φO(f1) + φO(f2) − φO(f1 + f2). (2.36)

Given we have calculated the bispectrum phase, φB(f1, f2), we need to know two other

values of the object phase spectrum to then iteratively calculate all other remaining values

for the object phase. A typical approach is to set:

φO(0, 0) = φO(1, 0) = φO(−1, 0) = φO(0, 1) = φO(0,−1) = 0. (2.37)

Thus:
φO((0, 0) + (0, 0)) = −φB((0, 0), (0, 0))

φO((1, 0) + (0, 0)) = −φB((1, 0), (0, 0))

φO((−1, 0) + (0, 0)) = −φB((−1, 0), (0, 0))

φO((0, 0) + (0, 1)) = −φB((0, 0), (0, 1))

φO((0, 0) + (0,−1)) = −φB((0, 0), (0,−1)).

(2.38)

Much like the cross spectrum, many different combinations of known values can be used

to find a value at an unknown location. For example, if the point object phase spectrum

φO(4, 5) is desired, then:

φO(4, 5) = φO(1, 0) + φO(3, 5) − φB((1, 0), (3, 5))

= φO(1, 0) + φO(3, 5) − φB((1, 0), (3, 5))

= φO(2, 3) + φO(2, 2) − φB((2, 3), (2, 2))

= φO(3, 4) + φO(1, 1) − φB((3, 4), (1, 1))

(2.39)
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and so forth. Each linear combination does not necessarily give the same results if noise

is present. Thus, like the cross spectrum method, many paths are typically calculated and

then averaged [21][31]. Lastly, due to a potential 2π bias when taking different paths, the

calculations are typically done as unit phasors, thus, the final algorithm for reconstructing

phase using the bispectrum is [21]:

e jφO(f1+f2) = e jφO(f1)e jφO(f2)e jφB(f1,f2). (2.40)

No example of implementing the bispectrum method is provided in this paper. The

reader can refer to the following references for examples and more information,

[2][21][24][25][26].

Both the cross spectrum and bispectrum method have proven to be effective at

reconstructing atmospherically blurred images to reveal binary pairs. However, as has

been discussed before, if the object is only binary detection, then complete image

reconstruction is unnecessary. By comparing the statistics of two hypothetical sources,

i.e., a single and binary, better results for binary detection can be had then by visually

inspecting reconstructed images. The next section will discuss another method of image

reconstruction useful in binary detection, imaging by correlation.

2.1.3 Imaging by Correlation.

This method of image recovery utilizes a process developed to recover meaningful

information from random data and applies it to the problem of image recovery from second

and third order correlation. This technique is unique in the fact that it simultaneously

recovers the Fourier magnitude and phase as compared with speckle imaging in which

amplitude and phase are recovered separately [34].

In general, correlation is an N th order process so thus for the purposes of binary

detection N = 2, referred to as autocorrelation, will be used. The general strategy is to

take the autocorrelation of the measured image data and the autocorrelation of an estimated

image and then iterate through a log likelihood cost function to reduce the estimated image
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to the most likely true image [34].

Let R(y) be the autocorrelation function of the measured image data, d(x), where

R(y) =
∑N

x=1 d(x)d(x + y), the summation representing the sum over all pixels in d. Let

Rλ(y) be the autocorrelation of the estimated image, λ(x). Any cost function can be used,

however in this work the I-divergence D(Rλ,R) function used by Schulz and Snyder is

adopted [34]:

D(R,Rλ) =
∑

y

[Rλ(y) − R(y)] +
∑

y

R(y)ln
R(y)
Rλ(y)

. (2.41)

By minimizing the I-divergence cost function we can solve for a λ(x) that is the most likely

true image. Taking the derivative of D(Rλ,R) with respect to a single point in the estimated

image and then setting that equal to zero yields the necessary optimality condition:

∂D(Rλ,R)
∂λ(xo)

=
∑

y

[λ(xo + y) + λ(xo − y)] −
∑

y

R(y)
Rλ(y)

[λ(xo + y) + λ(xo − y)] = 0. (2.42)

Schulz and Snyder then setup an algorithm that iteratively solves for an updated λ(x) based

on a previous one [34]. For k iterations:

λk+1(x) = λk(x)
1

R1/2
o

∑
y

λk(x + y)
[R(y) + R(−y)]

2Rλk(y)
(2.43)

where Ro is the autocorrelation evaluated at y = 0 of the measured data. Using the

convolution and correlation theorems, multiplication can be used in the Fourier domain.

For k iterations, an estimated reconstructed image, λk(x) is found [34]. The autocorrelation

is similar to the bispectrum in that image tilt does not need to be removed before processing.

Figure 2.5 shows a simulated result after 100 iterations. Figure 2.6 shows the

simulated result compared to the original image. The same simulation parameters used

in the cross spectrum example in Section 2.1.2.1 were used. The software implementation

of this method is discussed more in Chapter 3, as it is used as a comparison to the multi-

hypothesis technique proposed in this paper.
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Figure 2.5: Results with different numbers of iterations: (a) 1, (b) 5, (c) 10, (d) 15, (e) 80,

and (f) 100 iterations.
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Figure 2.6: Results of the correlation technique: (a) original image, (b) original image cross

section, (c) reconstructed image, and (d) reconstructed image cross section.
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2.1.4 Binary detection by post-process image reconstruction summary.

Image reconstruction via cross correlation, bispectrum and autocorrelation are all

proven techniques that can enhance image spatial resolution and thus greatly impact binary

detection. This section provided information for a basic understanding of how these

methods can enhance images.

This thesis will compare one of the methods listed above, image reconstruction by

autocorrelation, to a statistical approach that does not provide a reconstructed image but

focuses on the question–Was this image created by a single or binary point source(s)? The

next section will provide an overview of how a multi-hypothesis technique can be setup to

answer this question.

2.2 Multi-Hypothesis Detection

By assuming a source signal is either a zero, one, et cetera and calculating the expected

value of each hypothesis, the most likely original signal can be determined. This very

simple yet powerful logic is foundational to digital communication and other areas of electo

optics such as Light Detection And Ranging (LiDAR) [29]. The same logic can be used in

detecting binaries that have been distorted by the atmosphere.

If we can measure how the atmosphere distorts a point source and simulate how that

same atmosphere would distort various combinations of binary sources we can predict what

an image should look like if it was the result of a binary or single point source, as perceived

from the pupil plane of an imaging system. We can then compare what the image should

look like given a single or binary point source to what was actually imaged through that

same atmosphere. In this way a binary can be detected based on what we expect to see

given two different scenarios, or hypothesis.

Figure 2.7 shows the basic concept behind this idea. One of the most important

assumptions made for using this technique is that a valid point spread function (PSF) can

be measured that correlates to the image being analyzed for a potential binary. Another
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important assumption, and an area for future research, is to assume more than just two

scenarios to detect larger clusters then just a binary. Hypothesis for three, four, and so

forth, as well as different shapes can all be used as comparisons for the image that was

actually detected. The derivation of and detailed analysis of a proposed multi-hypothesis

algorithm to detect binaries is given in Chapter 3. Results of simulated and measured data

testing will be given in Chapter 4.

Multi-Hypothesis for Binary Detection Overview

Measure Data Calculate Log-likelihoods Binary Decision

Measured
Image

Measured
PSF

Based on 
detection criteria 
determine which 

hypothesis is most likely

Calculate most likely
intensity and position of single

point source to produce
measured image

Determine if image intensity is 
below minimum threshold for

detection.

Calculate most likely
intensity and position of two

point sources to produce
measured image

            Hypothesis Zero

             Hypothesis One

             Hypothesis Two

1 2 3

Figure 2.7: Overview of binary hypothesis method. Chapter 3 will work through

derivations of each step.
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2.3 Chapter Summary

As binary objects become closer and dimmer, detection becomes impossible for a

standard imaging system. Using adaptive optics, looking for patterns, extracting higher

resolution from speckle images, and estimating the image using correlation are current

methods for binary detection. This thesis will explore a method that has not been used

in astronomy for binary detection, referred to herein as the multi-hypothesis technique.

Basically, by measuring the PSF we can calculate what a single point source and a binary

source would look like, then compare that to what is detected. The result of this comparison

can be used to make a statistical determination on whether the image detected was the result

of a single point source or a binary point source.
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III. Methodology

This chapter will walk through the derivation and implementation of the multi-

hypothesis algorithms that are investigated in this thesis. The goal is to provide

the reader with a guide to repeat the results and conclusions contained in Chapters 4 and

5. Computer simulations and processing were conducted using Matlab™. It is important

to note that from this point forward all simulations will be single-frame short-exposure

images where the PSF is perfectly known.

The following table is provided as a quick reference of the different variables,

operations, and units used in this chapter.

Table 3.1: Common symbols.

Symbol Meaning

x rectangular coordinate vector in the true image plane

y rectangular coordinate vector in the detection plane

d(y) single, short exposure image

λ(x) true image

h(y) Point Spread Function, PSF

δ Dirac function

E expectation operator

F Fourier Transform

N2 Number of pixels in the image
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3.1 Derivation of multi-hypothesis algorithms

Given an atmospherically blurred image and a PSF corresponding to that image, the

question of weather that image contains a binary, single object or nothing can be determined

using a hypothesis-based model. This thesis will compare the results of three hypothesis.

First, that the source or true image does not contain any points. Second, that the image was

formed by a single point source. The third hypothesis is that the image was formed by two

point sources. It will be shown that the proposed algorithm can quickly determine which

hypothesis is the most likely. Thresholds to control false alarm rates can be incorporated

into the process to ensure a very high confidence of correctly detecting a binary. Obtaining

a valid PSF is not trivial but is not the topic of this thesis. Instead, the assumption is

made that a valid PSF can be obtained via wavefront sensor measurements. The next three

subsections will walk through the derivation of the zero, single and double point source

hypothesis algorithms.

3.1.1 Zero point source derivation.

The first hypothesis, referred to herein as hypothesis zero, is derived by assuming the

true image, λ(x), contains only background noise. Let bn be the median background noise

of the detected image, d(y). The expected value of the detected image can be written as the

discrete convolution of the true image with the PSF, h(y) [14]:

E[d(y)] =

N∑
x=1

λ(x)h(y − x)

=

N∑
x=1

bnh(y − x).

(3.1)

By definition of the OTF, h(y), the sum over all points is equal to unity regardless of how

it is shifted, giving:

E[d(y)] = bn. (3.2)

If we now make the assumption that each pixel in the detected image is statistically

independent and note that photon arrival is governed by Poisson statistics [13][14], the
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joint probability mass function for hypothesis zero can be written as:

N∏
y=1

P[d(y)] =

N∏
y=1

[
(bn)d(y)e−bn

d(y)!

]
. (3.3)

By taking the natural log of Equation 3.3 we can calculate a value of the log-likelihood

that can be used to compare to hypothesis one and two. Let LLh0 be the log-likelihood of

hypothesis zero:

LLh0 = ln

 N∏
y=1

P[d(y)]


= ln

 N∏
y=1

[
[bn]d(y)e−bn

d(y)!

]
=

N∑
y=1

[
ln

[
[bn]d(y)

]
+ ln

[
e−bn

]
− ln[d(y)!]

]
=

N∑
y=1

[
d(y) (ln[bn]) − bn − ln[d(y)!]

]
.

(3.4)

The final line of Equation 3.4 can be used to test against the log-likelihood values of

the other hypothesis equations to determine if an image contains zero, one or two point

sources. A simpler method can be used however by simply setting a threshold based on a

tolerance for false detection. Any image with a median photon count below this threshold

can be removed from further processing. Later in this chapter a method for calculating this

threshold will be given.

3.1.2 Single point source derivation.

The next hypothesis assumes a single point source and is referred to as hypothesis

one in this paper. If the true image, λ(x), is assumed to contain a single point source with

amplitude α0, it can be written as:

λ(x) = α0δ(x − x0). (3.5)

Equation 3.5 does not account for background noise. There are several methods used to

calculate the background noise in an image. Taking the median of the photon count of
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what is considered to be empty space surrounding the object of interest is one way to

estimate a single photon value for background noise at each pixel location. Using this

approximation, the hypothesized true image can be represented by the following equation,

where bn represents the median background noise of the detected image:

λ(x) = α0δ(x − x0) + bn. (3.6)

Let d(x) be a single detected image. The expected value of the detected image at pixel

location y, d(y), can be written as the discrete convolution of the true image λ(x) with the

transfer function, h(y) [14]:

E[d(y)] =

N∑
x=1

λ(x)h(y − x) (3.7)

Substituting Equation 3.6 into 3.7 gives:

E[d(y)] =

N∑
x=1

(α0δ(x − x0) + bn) h(y − x) (3.8)

and applying the sifting property of a Dirac and distributing the transfer function yields:

E[d(y)] = α0h(y − x0) +

N∑
x=1

bnh(y − x). (3.9)

By definition, the sum of the normalized transfer function, in this case h(y), over all pixels

is equal to one, so Equation 3.9 reduces to:

E[d(y)] = α0h(y − x0) + bn. (3.10)

The arrival of detected photons is assumed to be governed by Poisson statistics [13].

Furthermore, we assume each pixel in the detection plane is statistically independent.

These two assumptions allow us to write the joint Probability Mass Function (PMF) of

the detected image as:

N∏
y=1

P[d(y)] =

N∏
y=1

[
[α0h(y − x0) + bn]d(y)e−α0h(y−x0)−bn

d(y)!

]
. (3.11)
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To put Equation 3.11 in log-likelihood format we simply take the natural log of both sides.

Let, LLh1 be the log-likelihood of hypothesis one such that:

LLh1 = ln

 N∏
y=1

P[d(y)]


= ln

 N∏
y=1

[
[α0h(y − x0) + bn]d(y)e−α0h(y−x0)−bn

d(y)!

]
=

N∑
y=1

[
ln

[
[α0h(y − x0) + bn]d(y)

]
+ ln

[
e−α0h(y−x0)−bn

]
− ln[d(y)!]

]
=

N∑
y=1

[
d(y) (ln[α0h(y − x0) + bn]) − α0h(y − x0) − bn − ln[d(y)!]

]
.

(3.12)

We want to maximize the function in the right hand side of Equation 3.12 so we need to

find values for α0 and x0 that provide the numerically greatest results. One effective method

is to calculate a good estimate for α0, substitute it into the log-likelihood in Equation 3.12

and then cycle through values for, x0 that maximizes LLh1. The shift variable x0 that

maximizes the log-likelihood is then used to find a more accurate value for α0 using a

Picard iteration technique that will be derived below. First, we need an approximation

for the value of α0. If we assume the true image is a single point source we can sum all

photons in d(y) and subtract the average background noise contained in each pixel to get

an approximation for α0. If there are N2 pixels an initial guess for α0 is:

α0 =

N∑
y=1

[d(y)] − N2bn. (3.13)

Substituting this choice of α0 into the log-likelihood expression in Equation 3.12 we find

a value for x0 that produces a maximum of LLh1. The next step is to find a value for α0

that maximizes the log-likelihood. To accomplish this we can take the partial derivative

of the log-likelihood with respect to α0 and set it equal to zero. Solving that equation and

multiplying both sides by α0 will put it in a form to apply the Picard iteration technique.
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First, the partial derivative of the expression in Equation 3.12 with respect to α0 is:

∂

∂α0

ln
 N∏

y=1

P[d(y)]


 =

∂

∂α0

 N∑
y=1

[
d(y) (ln[α0h(y − x0) + bn]) − α0h(y − x0) − bn − ln[d(y)!]

]
0 =

N∑
y=1

[
d(y)h(y − x0)
α0h(y − x0) + bn

− h(y − x0) − 0 − 0]
]
.

(3.14)

Again note that the sum over all pixels of the normalized PSF is unity,
∑N

y=1 h(y − x0) = 1,

which reduces Equation 3.14 to:

1 =

N∑
y=1

[
d(y)h(y − x0)
α0h(y − x0) + bn

]
. (3.15)

If we multiply both sides of Equation 3.15 by α0 we can create an iterative algorithm by

applying the Picard technique. If we let n represent the iteration index, let the left side be

the new α0 such that our final update equation is:

α0(n+1) = α0(n)

N∑
y=1

[
d(y)h(y − x0)

α0(n)h(y − x0) + bn

]
. (3.16)

The initial value for α0(n) is the estimated value found in Equation 3.13. One method

of determining how many iterations to run is to compare the variance between α0(n+1) and

α0(n). Once the difference between the old and new alphas are within a desired value the

iteration process can end. The final value of α0(n+1) from Equation 3.16 along with the

previously calculated value for x0 is entered a final time into the log-likelihood equation

for hypothesis one, in Equation 3.12, to produce the number that will be compared with the

other log-likelihood values from hypothesis zero and two.

The next section will derive the hypothesis two algorithms and follows the

methodology in this section very closely.

3.1.3 Two point source derivation.

The final hypothesis we will look at, hypothesis two, assumes the true image, λ(x),

is two point sources with amplitude α1 and α2 with bn again representing the average
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background noise described in Section 3.1.2:

λ(x) = α1δ(x − x1) + α2δ(x − x2) + bn. (3.17)

The expected value of the detected image at pixel location y, d(y), can be written as

the discrete convolution of the true image λ(x) with the transfer function, h(y):

E[d(y)] =

N∑
x=1

λ(x)h(y − x). (3.18)

Similar to the hypothesis one, substituting the expression in Equation 3.17 into Equation

3.18 and applying the sifting property of a Dirac and noting once again that the sum of the

optical transfer function over all pixels is unity,
∑N

y=1 h(y − x0) = 1, gives the following

result:

E[d(y)] = α1h(y − x1) + α2h(y − x2) + bn. (3.19)

Photon arrivals in the detection plane are governed by Poisson statistics. Furthermore,

we assume noise in each pixel in the detection plane is statistically independent. This

allows us to write the joint PMF as:

N∏
y=1

P[d(y)] =

N∏
y=1

[
[α1h(y − x1) + α2h(y − x2) + bn]d(y)e−α1h(y−x1)−α2h(y−x2)−bn

d(y)!

]
. (3.20)

As was done for hypothesis one, we will put Equation 3.20 into a log-likelihood format

and simplify. Let LLh2 be the log-likelihood for hypothesis two which is equal to the natural
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log of Equation 3.20:

LLh2 = ln

 N∏
y=1

P[d(y)]


= ln

 N∏
y=1

[
[α1h(y − x1) + α2h(y − x2) + bn]d(y)e−α1h(y−x1)−α2h(y−x2)−bn

d(y)!

]
=

N∑
y=1

 ln
[
[α1h(y − x1) + α2h(y − x2) + bn]d(y)

]
+ ln

[
e−α1h(y−x1)−α2h(y−x2)−bn

]
ln[d(y)!]


=

N∑
y=1

[
d(y) ln[α1h(y − x1) + α2h(y − x2) + bn] − α1h(y − x1) − α2h(y − x2) − bn

ln[d(y)!]

]
.

(3.21)

The final result of Equation 3.21 is what will be implemented to calculate the log-likelihood

of hypothesis two. There are four unknown variables needed to find the maximum value

namely the most likely amplitude and pixel location of the hypothesized true image. As

with hypothesis one, we can make a initial guess as to what the amplitude of α1 and α2

might be assuming the image, d(y), contains two source points of light. In Section 3.1.2

we showed that a good estimate is to sum up the photons in the image, d(y) and subtract

off the estimated background noise photons. We can apply this same technique and simply

assume that each point in the binary is equally as bright. During the iteration phase of this

algorithm more accurate values for α1 and α2 will be descended on. So initial values can

be written as:

α1 = α2 =

∑N
y=1[d(y)] − N2bn

2
. (3.22)

Lastly we need to calculate an iterative algorithm for computing accurate values of α1

and α2. This can be accomplished using the same method applied to α0, namely looking at

the gradient with respect to α1 and α2. Starting with the partial derivative of Equation 3.21
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with respect to α1:

0 =
∂

∂α1
(LLh2) =

∂

∂α1

ln
 N∏

y=1

P[d(y)]




=
∂

∂α1

N∑
y=1

[
d(y) ln[α1h(y − x1) + α2h(y − x2) + bn] − α1h(y − x1) − α2h(y − x2) − bn

ln[d(y)!]

]

=

N∑
y=1

[
d(y)h(y − x1)

α1h(y − x1) + α2h(y − x2) + bn
− h(y − x1)]

]

=

N∑
y=1

[
d(y)h(y − x1)

α1h(y − x1) + α2h(y − x2) + bn

]
−

N∑
y=1

[
h(y − x1)

]
.

(3.23)

As has been stated previously, regardless of how it is shifted, the sum of the normalized

PSF over all pixels is equal to unity,
∑N

y=1[h(y − x1) = 1, resulting in:

1 =

N∑
y=1

[
d(y)h(y − x1)

α1h(y − x1) + α2h(y − x2) + bn

]
. (3.24)

In similar fashion of solving for α0 in Section 3.1.2, we can create a Picard iteration by

multiplying both sides by α1 noting that the right hand side of α1 is the n + 1 iteration

where n is the iteration index. The same process will give us an equation for α2, so we

have:

α1(n+1) = α1(n)

N∑
y=1

[
d(y)h(y − x1)

α1(n)h(y − x1) + α2(n)h(y − x2) + bn

]
, (3.25)

α2(n+1) = α2(n)

N∑
y=1

[
d(y)h(y − x2)

α1(n)h(y − x1) + α2(n)h(y − x2) + bn

]
. (3.26)

Given we have already found a valid value for x1 and x2 by solving 3.21, as we iterate

through Equations 3.25 and 3.26, α1(n)h(y − x1) + α2(n)h(y − x2) + bn will converge on d(y)

since the right side is a contraction mapping, thus, Equations 3.25 and 3.26 will converge

to:

α1(n+1) = α1(n)

N∑
y=1

[
h(y − x1)

]
(3.27)
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α2(n+1) = α2(n)

N∑
y=1

[
h(y − x2)

]
. (3.28)

Again, no matter how the normalized PSF, h(y), is shifted around the sum over all pixels

will be unity by definition, thus,
∑N

y=1
[
h(y − x1)

]
=

∑N
y=1

[
h(y − x2)

]
= 1. Once the

difference between the old and new alphas are within a desired value the iterative process

ends and the final log-likelihood can be calculated using the last values of α1(n+1) and α2(n+2)

as well as the x1 and x2 values determined during the first iteration of Equation 3.21 by

plugging all these values back into 3.21. This final log-likelihood value will be compared

with the value found from hypothesis one to make a determination as to weather the image,

d(y) was the result of a single point source or a binary source.

3.2 Software implementation

Software implementation was accomplished using Matlab™. The following subsec-

tions will provide a description of software implementation considerations to maximize

detection while minimizing false alarm rates and processing time.

3.2.1 Point source threshold.

One of the first tests is to determine if an image contains a high enough signal to

noise ratio to be considered for hypothesis one and two. If an image contains no pixels

above a calculated threshold it is ignored from further processing. This threshold is based

on the detected background noise as well as a pre-determined tolerance for false positive

point sources. The probability that a pixel which contains only background noise is falsely

measured as a valid signal is:

Pfalse signal = 1 −
t∑

k=0

(bn)ke−bn

k!
. (3.29)

For the simulated results provided in this thesis the probability of a false signal was set

to, Pfalse signal = 1 × 10−8. What remains is to solve for the threshold variable, t such

that the right side of Equation 3.29 is equal to 1 × 10−8. This is the first threshold used in

implementation and is used for determining which pixels in an image warrant processing.
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If an image contains no pixels above the threshold, it is determined to be hypothesis zero,

no objects detected.

3.2.2 zero point source implementation.

As soon as the detected image, d(y), is captured, cropped and ready for detection pro-

cessing the median background noise can be calculated. The results for this background

noise estimate, referred to as bn throughout this thesis, are fed into the first threshold dis-

cussed in the previous subsection. If an image to be processed contains no pixels that

exceed the background noise threshold they are ignored and it is assumed that hypothesis

zero is correct. In this way the image does not need to be processed for hypothesis one and

two if it meets the criteria for being hypothesis zero, that is when the image is assumed to

have no point sources.

3.2.3 Single point source implementation.

Given we have already calculated the background noise, bn, and have a valid PSF,

h(y), we can implement the log-likelihood equation for hypothesis one, 3.12, and the α0(n+1)

Equation, 3.16. The results of these two algorithms will be the most likely intensity and

location of a single point source that could produce the detected image, d(y). It will also

produce a numerical value, the log-likelihood, which will be compared to hypothesis two

to determine detection of a binary. As derived in Section 3.1.2, the log-likelihood for

hypothesis one is:

LLh1 =

N∑
y=1

[
d(y) (ln[α0h(y − x0) + bn]) − α0h(y − x0) − bn − ln[d(y)!]

]
.

To improve the computational efficiency, the term, ln[d(y)!] is dropped. This will not

impact the final decision because it sums to the same value in both hypothesis one and two.

The final form of LLh1 that will be implemented in code is:

LLh1 =

N∑
y=1

[
d(y) (ln[α0h(y − x0) + bn]) − α0h(y − x0) − bn

]
. (3.30)
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Given the above information, the implementation process is as follows,

1. Calculate the estimate for α0 using Equation 3.13.

2. Calculate the log-likelihoods for hypothesis one, Equation 3.30, using the estimate

for α0 and cycling through valid source locations governed by x0.

3. Find the x0 associated with the highest log-likelihood value.

4. Use the x0 found in step 3 to find a more accurate value of α0, denoted α0(n+1), where

n is the number of iterations used to converge on a value where α0(n+1) = α0(n) using

Equation 3.16.

5. Using the values of α0(n+1) and x0 calculated above, calculate the log-likelihood of

hypothesis one a final time. This is the value used in comparison with hypothesis

two results.

Not all pixels need to be evaluated as potential locations of the point source, x0. Only pixels

in a 20 by 20 grid surrounding the brightest pixel in a given image, d(y) are evaluated. This

step significantly reduced the processing time.

3.2.4 Two point source implementation.

Implementation of the binary or two point source hypothesis is similar to hypothesis

one. It is worth repeating for completeness. Given the background noise, bn, and valid

PSF, h(y), we can implement hypothesis two log-likelihood Equation 3.21, as well as the

α1(n+1) and α2(n+1) Equations 3.27 and 3.28. As derived in Section 3.1.3, the log-likelihood

for hypothesis two is:

LLh2 =

N∑
y=1

[
d(y) ln[α1h(y − x1) + α2h(y − x2) + bn] − α1h(y − x1) − α2h(y − x2) − bn

ln[d(y)!]

]
.

To improve the computational efficiency, the term, ln[d(y)!] is dropped. This will not

impact the final decision because it sums to the same value in hypothesis zero, one and
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two. The final form of LLh2 that will be implemented in code is:

N∑
y=1

[
d(y) ln[α1h(y − x1) + α2h(y − x2) + bn] − α1h(y − x1) − α2h(y − x2) − bn

]
. (3.31)

Given the above information, the implementation process is the same as hypothesis one the

primary difference being the need to solve for two point source intensities and locations

instead of one. The process is as follows,

1. Calculate the estimate for α1 and α2 using Equation 3.22.

2. Calculate the log-likelihoods for hypothesis two, Equation 3.31, using the estimates

for α1 and α2 from step one and cycling through valid source locations governed by

x1 and x2. This requires a quadruple iteration loop.

3. Find the x1 and x2 associated with the highest log-likelihood value.

4. Use the x1 and x2 found in step three to find a more accurate value of α1 and α2,

denoted α1(n+1) and α2(n+1), where n is the number of iterations used to converge on a

value where α1(n+1) = α1(n) and α2(n+1) = α2(n)using Equation 3.27 and Equation 3.28.

5. Using the values of α1(n+1) and α2(n+1) from step four and x1 and x2 from step three,

calculate the log-likelihood of hypothesis two one final time. This is the value used

in comparison with hypothesis one results.

Again, not all pixels need to be evaluated as potential locations of the point sources, x1 and

x2. Only pixels in a 20 by 20 grid surrounding the brightest pixel in a given image, d(y)

are evaluated. In addition, pixel locations in the subset that did not exceed the estimated

background noise were ignored. These steps significantly reduced the processing time.

3.2.5 Decision process.

It is important to note that all simulated tests used short exposure generated images

for both the detected image and the PSF. The measured images used are long exposure
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images. An area for further testing is to compare detection techniques using simulating

long exposure images in various configurations.

Given the log-likelihood values found from implementing the hypothesis one and two

algorithms, the task of making a correct decision is the next step. One would think that

simply comparing the results would give the best decision as to weather or not a binary

exists. However, because hypothesis two has more degrees of freedom its log-likelihood

value is almost always higher than hypothesis one. A bias is needed to give more weight

to hypothesis one. If τ is the bias, the following equation demonstrates the decision logic

implemented in simulation:

LLH2 > LLH1 + τ. (3.32)

Finding the value for τ that increases the probability of correct detection and reduces the

probability of false alarm is a key point of the simulation tests. Chapter four will provide

the results of several tests that show how properly choosing τ can impact false alarm and

detection requirements.

Another important decision criteria is how close can two objects be in the detection

plane and be considered two objects. Some deep space surveillance telescopes are under

sampled. A single object that is smaller than a pixel in the detection plane might appear

as two adjacent pixels due to atmospheric blurring or the orientation of the telescope. For

this reason, the detection code will ignore the eight pixels immediately surrounding the

brightest pixel in the area of interest. If this step is not done, the Probability of False

Alarm (P f a) rate goes up to around 40% due to the single point source often being split

between two adjacent pixels as described. This pixel elimination induces a requirement

that a binary will only be detected if there is at least one pixel of separation between the

point sources. This may not be necessary depending on the image quality. For instance,

this restriction was not needed on the measured images used in this thesis. An area of future

research is to explore using sub-pixel processes to allow binaries to be detected with high
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confidence when two bright pixels are adjacent.

Applying the bias correction τ and adjacent pixel restriction as described above, the

final step is to compare the log-likelihoods. The most likely hypothesis is returned as

the final decision of the code. Chapter four will show a number of results using various

initial conditions. The next section will discuss how the simulations for those results were

conducted.

The detection technique used for the images processed by the correlation method

took the brightest pixel and then, based on it’s intensity, looked for another pixel with

brightness above a variable threshold. The threshold for the second pixel was determined

by keeping the false alarm rate below 10%. Again, the restriction on adjacent pixels being

valid solutions was enforced.

3.3 Simulation test model

An in-focus telescope was simulated to test various seeing parameters and thresholds

using the multi-hypothesis implementation previously described. The diameter, D, and

focal length are 1 meter. The detection plane consisted of N × N samples, where N = 128.

The wavelength of light, λ, was set to, λ = 0.5 µm. Photon arrival is assumed to be

governed by Poisson statistics and is applied to the intensities calculated at each point in the

detection plane. As with most simulated tests, the number of trials is important. For each of

the simulated test, 200 random images were generated for each background noise, seeing

condition, and binary/point source intensity. The next few subsections will provide more

detail on atmospheric settings, how the threshold, source intensities, and seeing conditions

were simulated, and how results were quantified.

3.3.1 Modeling atmospheric effects.

As described in Section 2.1.1, randomly generated phase screens using Zernike

polynomials were used for all simulation models. Again, as was previously described,

given an aperture diameter, D, Fried seeing parameter, r0, and how many polynomial
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expansions are desired, a random phase screen can be produced using Equations 2.1-

2.9 found in Chapter 2. The number of Zernike polynomials used will dictate the

amount of higher order aberrations that the model will be able to reproduce. For

the simulations conducted for this thesis 85 Zernike polynomials were used to model

atmospheric distortion. The diameter of the aperture was set to, D = 1 meter. The Fried

seeing parameter, r0, is one of the variables modulated during different tests, the results of

which are provided in Chapter 4.

3.3.2 Test variables.

For the simulated binary tests, two point sources were modeled being separated by the

equivalent of one pixel in the detection plane. The parameters for the tests were as follows,

1. The Fried seeing parameter, r0. Adjusting this directly influences the amount of

atmospheric turbulence created by the Zernike phase screen generator. A larger

r0, given in meters, corresponds with better seeing conditions and thus lower

atmospheric turbulence.

2. Switching between one or two point sources to demonstrate both correctly detecting

when two point sources are present and also properly detecting when only a single

point source was simulated.

3. Point source intensity and intensity variance between binary points. Both the overall

intensity and the intensity between the two point sources was modulated to show

performance falloff and error rates as light levels drop and/or light variance increases

between points.

These three items–seeing conditions, a single vs. binary source, and light intensity for the

source(s) were the only variables changed to produce the simulated images used for testing.

The only variable in the detection phase of the code is τ, which controls the weighted bias

for hypothesis one to counteract the advantage hypothesis two has in degrees of freedom.
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3.3.3 Performance measurements for simulated data.

By adjusting the three variables described in the previous section, namely, seeing

conditions, one or two point sources, and source intensity, simulated single-frame short

exposure images are produced. The multi-hypothesis algorithm processes these simulated

images and produces log-likelihoods for hypothesis one and two. A decision is then made

as to which hypothesis is more likely. Two key metrics are Probability of False Alarm, P f a,

and Probability of Detection, PD. The results found in Chapter 5 will show plots for the

probabilities of detection and false alarm as these different variables are adjusted. The goal

is to form conclusions on what kind of performance can be expected given different source

patterns in various seeing conditions.

3.3.4 Simulated comparison model.

In an effort to show how image reconstruction techniques might perform in the same

simulations, an imaging by correlation process with its corresponding result data has been

implemented. The simulated images are the same as for the multi-hypothesis model. For

detection, a simple logic process is used to decide if the reconstructed image contains one

or two objects in the area of interest above a threshold set to reduce the false alarm rate.

Similar to the multi-hypothesis method, pixels immediately surrounding the brightest pixel

in the region of interest are ignored to lower the false alarm rate considerably. The imaging

by correlation technique implemented is outlined in Chapter 2 Section 2.1.3. Because the

simulation tests a single short exposure image, the intensity of the source is increased to

allow the imaging by correlation method to get into a range in which it can reconstruct

a binary. Another note is the use of a low D/r0 value, it was also necessary to lower

this value to obtain reasonable results. The imaging by correlation method typically uses

multiple images of the same object to achieve quality results. However, to compare it to

the multi-hypothesis method, which in these simulations only use single short exposure
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images, atmospheric effects are reduce to compensate for lack of multi-frame imaging.

The low D/r0 can be effectively achieved by an adaptive optic system.

3.4 Measured data test model

A large data set of images taken of various geosynchronous objects by the Space

Surveillance Telescope (SST) is examined in this section. In some of the images, it is clear

that a dim star moves close to the stationary object–even where they appear to be a single

object. This provides a good set of images to demonstrate potential real-world performance

of the multi-hypothesis detection algorithms. The measured data test follows these steps,

1. import measured data image to be processed for detection

2. import measured data images to be used to calculate estimated PSF

3. Calculate estimate PSF based on images of a single point taken near to the time and

location of the image to be processed for detection.

4. Calculate the estimate background noise level of the image to be processed for

detection.

5. process the image for detection through the multi-hypothesis algorithm. Return the

log-likelihood of both hypothesis one and two.

The results of this process for the images previously described are provided in Chapter 4.

3.4.1 Description of measured data.

The measured data used in this test was taken by the SST, which is a Defense

Advanced Research Projects Agency (DARPA) program designed to detect space debris

in earth’s orbit (see http://www.darpa.mil/Our Work/TTO/Programs/Space Surveillance

Telescope (SST).aspx for more information). The images used in this thesis were taken

in 2012 and focus on the ANIK-F1 and ANIK-F1R geosynchronous communications

satellites.
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3.4.2 Deriving a valid PSF.

As enumerated above, a valid PSF is key to estimating the most likely location and

intensity of the point source(s). This is done by taking multiple images at around the

same time and location as the image being processed for detection. The average PSF over

these multiple images is when running the multi-hypothesis algorithm. One of the major

assumptions of this method is the ability to obtain a valid point spread function.

3.4.3 Determining success of measured data test.

The set of images used for this test shows a satellite in the center while a dim star

moves into the picture and eventually right next to the satellite. The detection algorithm

should properly detect the single object until the second object, the star, moves into the

region of interest. How well it performs when the satellite and the star look like a single

point is of particular interest. The results of this test are reported in Chapter 4.
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IV. Results

The goal of this chapter is to provide test results using both simulated and measured

data in a way that is easy to compare and digest. Please refer to Chapter 3 of this

thesis for a more detailed look at the setup of the simulations. The basic simulation setup

is to generate images using phase screens to represent various amounts of atmospheric

distortion on binary points separated by a single pixel width. Average background noise

and atmospheric turbulence are varied by noted amounts in each section. The first section

will look at the relationship between the Probability of Detection (PD) and P f a as governed

by a bias variable. The second section will compare the multi-hypothesis method to an

implementation of imaging by correlation as described in Chapter 3. The third section will

look at results as real measured images are evaluated by the multi-hypothesis detection

algorithm.

4.1 Multi-hypothesis binary detection simulation results

Test parameters for calculating the PD and P f a are as follows,

1. Three different binary sources were used. All with a detection-plane pixel-width of

separation between points.

A. First, both points at 500 photons of intensity.

B. Second, one point source at 1000 and one at 500 photons of intensity.

C. Third, both points at 1000 photons of intensity.

2. Three different point sources were used to measure P f a related to the PD of similar

intensity.

A. First, a single point at 1000 photons of intensity corresponding to the binary

points of 500 photons each.

48



B. Second, a single point at 2000 photons of intensity corresponding with the

binary points of 1000 photons each.

C. Third, a single point at 1500 photons each corresponding with the binary

points of 1000 and 500.

3. 200 random images were generated for each binary source for each combination of

D/r0 and background noise level.

4. D/r0 levels simulated, D/r0 = [1.25, 1.43, 1.67, 2, 2.5, 3.33, 5, 10].

5. Background levels simulated, noise = [1, 2, 3, 4, 5, 6, 7, 8] photons.

6. The center of mass of each simulated image was centered and a pixel window of

128x128 was sent to the algorithm for processing.

7. A normalized PSF was simulated corresponding to each simulated image passing

through the same atmospheric phase screen.

8. The assumption that there must be at least one pixel of separation between the binary

points was enforced in the code, so adjacent pixels were not considered as valid

hypothesis two solutions. This reduces the false alarm rate.

It should be noted that the decision to use Freid seeing parameters above 0.3m is made to

simulate conditions when atmospheric distortion is justified by the effect of adaptive optics

which partially compensate for the effects of atmospheric turbulence.
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4.1.1 Image generation.

The following are a sample of the 76,800 images generated and processed to estimate

the probability of detection and false alarm for various noise and seeing conditions. The

first, Figure 4.1, shows samples of simulated short exposure binaries, the second, Figure

4.2, single point sources. The amount of background noise and atmospheric conditions are

noted under each sample image.
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Figure 4.1: Sample simulated detected images of binary source with 500 photons for each

point. Samples taken for various background noise and D/r0 values as given next to each

image. Zoomed in to 31x31 pixels.
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Figure 4.2: Sample simulated detected images of single point sources used in calculating

false alarm rates. Samples taken for various background noise and D/r0 values as given

next to each image. Zoomed in to a 31x31 pixel area.
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4.1.2 Log-likelihood bias correction.

Hypothesis two has an advantage in the form of more degrees of freedom to fit two

shifted and scaled point spread functions to the detected image. If LLH1 and LLH2 are the

log-likelihood results of hypothesis one and two respectively then:

LLH2 > LLH1 + τ, (4.1)

where τ is controls how much bias to give to hypothesis one to reduce the false alarm rates.

For the simulation results of this thesis, a maximum false alarm rate of 10% was set and τ

adjusted accordingly. The resulting value for τ for each test is as follows,

1. Test one, binary of 500 photons each and a single point source of 1000 photons.

τ = 36.

2. Test two, binary of 1000 and 500 photons and a single point source of 1500 photons.

τ = 60.

3. Test three, binary of 1000 photons each and a single point source of 2000 photons.

τ = 88.

The next several subsections will provide the resulting PD and P f a tables corresponding

with each test.

4.1.3 Probability of Detection (PD) sample results.

The PD tables in this section provide data on how often the multi-hypothesis

algorithm successfully detected a binary averaged over 200 trials under each combination

of background noise and D/r0. Background noise increases moving vertically and D/r0

increases moving horizontally in each table. Each of the three tables in this section are

from a different combination of binary sources. The first is from a binary whose simulated

intensity at the aperture plane, prior to applying the atmosphere and noise, are each 500

photons. The second is a binary where one point is 1000 and one is 500 photons. The last

table provides the PD results when the binary points each have 1000 photons.
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Table 4.1: Probability of Detection (PD) results using binary source with 500/500 photons.

PD results, binary source 500/500 photons

atmospheric seeing, D/r0

1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.00

ad
de

d
ba

ck
gr

ou
nd

no
is

e
in

ph
ot

on
s 1 100% 100% 100% 100% 100% 100% 99.5% 96.5%

2 100% 99.5% 99.5% 98% 92.5% 92% 78.5% 26%

3 93.5% 85% 88.5% 81.5% 67.5% 48% 20% 2.5%

4 38.5% 39.5% 27% 21.5% 12% 8% 2.5% 0%

5 4% 5% 2.5% 1.5% 2% 0.5% 0% 0%

6 0% 0% 0% 0.5% 0% 0% 0% 0%

7 0% 0% 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0% 0% 0%
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Table 4.2: Probability of Detection (PD) results using binary source with 1000/500 photons.

PD results, binary source 1000/500 photons

atmospheric seeing, D/r0

1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.00

ad
de

d
ba

ck
gr

ou
nd

no
is

e
in

ph
ot

on
s 1 100% 100% 100% 100% 100% 100% 100% 97.5%

2 100% 100% 100% 100% 98% 90.5% 67.5% 10.5%

3 97% 95% 92.5% 85% 65.5% 44.5% 8% 0%

4 30% 26.5% 21.5% 15% 9% 2% 0% 0%

5 0% 0% 0% 0% 0% 0% 0% 0%

6 0% 0% 0% 0% 0% 0% 0% 0%

7 0% 0% 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.3: Probability of Detection (PD) results using binary source with 1000/1000

photons.

PD results, binary source 1000/1000 photons

atmospheric seeing, D/r0

1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.00

ad
de

d
ba

ck
gr

ou
nd

no
is

e
in

ph
ot

on
s 1 100% 100% 100% 100% 100% 100% 100% 99%

2 100% 100% 100% 99.5% 100% 97.5% 87% 38%

3 98% 97.5% 97.5% 92% 85.5% 73.5% 31.5% 3.5%

4 71% 64.5% 61% 47% 33% 18.5% 6% 0%

5 9% 4% 4% 6% 5% 0.5% 0% 0%

6 0% 0% 0% 0% 0.5% 0% 0% 0%

7 0% 0% 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0% 0% 0%
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4.1.4 Probability of false alarm (P f a) simulation results.

The P f a tests entail processing single point sources at similar intensity to a

corresponding binary sources as described in Chapter 3. A maximum P f a of 10% was

enforced as previously stated. Decreasing the P f a will also decrease the detection rate. The

following three tables will follow the style and format of the PD tables using the same scale

and parameters, the only difference being the actual processed images. The first table will

show P f a results using a point source with 1000 photons of intensity in the aperture plane,

again, prior to diffraction, added noise and atmospheric blurring. The second table will

show results when using a point source of 1500 photons and the final table contains the

results when a point source of 2000 photons was used in image generation.

Table 4.4: Probability of False Alarm (P f a) results using point source with 1000 photons.

P f a results, point source with 1000 photons

atmospheric seeing, D/r0

1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.00

ad
de

d
ba

ck
gr

ou
nd

no
is

e
in

ph
ot

on
s 1 0% 0% 0.5% 0% 2% 5% 8.5% 8%

2 0% 0% 0% 0% 0% 0.5% 0% 0%

3 0% 0% 0% 0% 0% 0% 0% 0%

4 0% 0% 0% 0% 0% 0% 0% 0%

5 0% 0% 0% 0% 0% 0% 0% 0%

6 0% 0% 0% 0% 0% 0% 0% 0%

7 0% 0% 0.5% 0% 0% 0% 1% 0%

8 0.5% 0% 0.5% 0% 0% 0% 0% 0%
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Table 4.5: Probability of False Alarm (P f a) results using point source with 1500 photons.

P f a results, point source with 1500 photons

atmospheric seeing, D/r0

1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.00
ad

de
d

ba
ck

gr
ou

nd
no

is
e

in
ph

ot
on

s 1 0% 0% 0% 0% 1% 1.5% 3% 8%

2 0% 0% 0% 0% 0% 0% 0% 0%

3 0% 0% 0% 0% 0% 0% 0% 0%

4 0% 0% 0% 0% 0% 0% 0% 0%

5 0% 0% 0% 0% 0% 0% 0% 0%

6 0% 0% 0% 0% 0% 0% 0% 0%

7 0% 0% 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.6: Probability of False Alarm (P f a) results using point source with 2000 photons.

P f a results, point source with 2000 photons

atmospheric seeing, D/r0

1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.00

ad
de

d
ba

ck
gr

ou
nd

no
is

e
in

ph
ot

on
s 1 0% 0% 0% 0% 0.5% 2% 4% 9%

2 0% 0% 0% 0% 0% 0% 0% 0%

3 0% 0% 0% 0% 0% 0% 0% 0%

4 0% 0% 0% 0% 0% 0% 0% 0%

5 0% 0% 0% 0% 0% 0% 0% 0%

6 0% 0% 0% 0% 0% 0% 0% 0%

7 0% 0% 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0% 0% 0%
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4.1.5 PD and P f a result summary.

The PD depends on the log-likelihood of hypothesis two being greater than the log-

likelihood of hypothesis one plus a weighting factor, τ. The weighting factor was set in

such a way that the P f a was kept under 10%, for a given test which cycled through various

background noise and atmospheric imaging conditions. The results of this section show

that this multi-hypothesis algorithm can correctly detect binaries under a wide range of

conditions while maintaining a low false alarm rate. However, as seeing conditions fall

below D/r0 = 5 and noise values rise above Bnoise = 4 photons, the detection under these

simulated binaries drops off. As expected, the higher the signal to noise the better overall

detection. The tests where a binary with 1000 and 500 photons of intensity was used show

that the multi-hypothesis algorithm can differentiate a dim object next to a brighter object.

These results also demonstrate that using adaptive optics and/or image post-processing

enhancements that lower the effective D/r0 and raise the signal to noise ratio will greatly

improve the detection rate while maintaining a low false alarm rate. The next section will

compare some of the results above to a detection algorithm used on images enhanced using

speckle interferometry.

4.2 Comparison with imaging by correlation technique

This section will describe the results obtained when running binary and single

point images with various amounts of noise and atmospheric blur through the detection

algorithms as described in Chapter 3. The imaging by correlation technique attempts to

reconstruct the single short exposure image around a small group of pixels that should

contain either a binary or point source. Then a threshold, which has been set to maintain

a false alarm rate below 10%, determines if a binary or single point is contained in the

reconstructed image. This is compared to the multi-hypothesis method which calculates

the log-likelihoods of a single point or binary in a given image. Both methods keep the P f a

below 10% and both enforce the requirement that a binary have at least one pixel of space
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between points.

The following are the simulation parameters used in the comparison tests.

1. Three different binary sources were used. All with a pixel-width (in the aperture

plane) of separation between points before diffraction and atmospheric blurring.

A. First, both points at 500 photons of intensity.

B. Second, one point at 1000 and one at 500 photons of intensity.

C. Third, both points at 1000 photons of intensity.

2. Three different point sources were used to measure P f a related to the PD of similar

intensity.

A. First, a single point at 1000 photons of intensity corresponding to the binary

points of 500 photons each.

B. Second, a single point at 1500 photons of intensity corresponding with the

binary points of 1000 and 500 photons.

C. Third, a single point at 2000 photons of intensity corresponding with the

binary points of 1000 photons each.

3. 200 random images were generated for each binary source for each combination of

D/r0 and background noise level.

4. D/r0 levels simulated, D/r0 = [1.7, 2.5, 5].

5. Background levels simulated, noise = [1, 2, 3] photons.

6. Images were 128x128 pixels each.

7. A normalized PSF was simulated corresponding to each simulated image passing

through the same atmospheric phase screens.
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8. The assumption that there must be at least one pixel of separation between the binary

points was enforced in the code.

The next subsections will provide the P f a results first and then the PD results.

4.2.1 Probability of False Alarm (P f a) comparison results.

First the P f a comparison results are provided. As has been mentioned before, a ceiling

of 10% was enforced. The following three figures will show the P f a as a function of D/r0

for the different background noise level as well as for each simulated brightness level.
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Figure 4.3: False Alarm rate versus D/r0 for a point source with an intensity of 1000

photons for, (a) background noise level=1, (b) background noise level=2, (c) background

noise level=3.
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Figure 4.4: False Alarm rate versus D/r0 for a point source with an intensity of 1500

photons for, (a) background noise level=1, (b) background noise level=2, (c) background

noise level=3.
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Figure 4.5: False Alarm rate versus D/r0 for a point source with an intensity of 2000

photons for, (a) background noise level=1, (b) background noise level=2, (c) background

noise level=3.
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4.2.2 Probability of Detection (PD) comparison results.

This subsection provides the PD comparison results. Each figure plots the probability

of detection versus D/r0 for various background noise and brightness levels as indicated in

each graph. These detection rates are impacted by maximum allowable false alarm rate, as

explained in Chapter 3.
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Figure 4.6: Detection rate versus D/r0 for a binary source with an intensities of 500 and 500

photons for, (a) background noise level=1, (b) background noise level=2, (c) background

noise level=3.
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Figure 4.7: Detection rate versus D/r0 for a binary source with an intensities of 1000

and 500 photons for, (a) background noise level=1, (b) background noise level=2, (c)

background noise level=3.
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Figure 4.8: Detection rate versus D/r0 for a binary source with an intensities of 1000

and 1000 photons for, (a) background noise level=1, (b) background noise level=2, (c)

background noise level=3.

63



4.2.3 Comparison result summary.

From the data obtained from the simulation tests, the P f a performance of the imaging

by correlation and multi-hypothesis methods are similar. This is due to the enforcement of

a common maximum of 10% being enforced on both detection algorithms. The maximum

threshold can obviously be increased or decreased depending on the desired false alarm

rate.

Looking at the PD results, it is clear that the multi-hypothesis method, in the given

simulated tests, is superior in detection. These positive results demonstrate a significant

potential improvement over traditional binary detection methods when that detection is

based on a single short exposure image.

4.3 Measured data processing results

As described in Chapter 3, image data was obtained from the DARPA SST. These

images were focused on two satellites in Geostationary Earth Orbit (GEO). As the

telescope is focused on a satellite in GEO, stars appear to pass by in the background. On

a few occasions, a starlight will be right next to the satellite so as to appear to be a single

blurry object. This is the scenario that was run through the multi-hypothesis algorithm to

see if it correctly detected a single source when the object satellite is the only light source

in the frame and then correctly detect a binary as relatively equal intensity starlight moves

into the frame and then right next to the satellite. A PSF was estimated by averaging several

images where a single point is present around the same time as the images processed for

detection. The following four subsections provide the images used and the detection results.

4.3.1 First image: two points spaced far away.

The first image in this sequence of four contains a satellite centered and a star entering

the frame on the top. This is clearly a binary and, as expected, hypothesis two had a higher

log-likelihood.

64



(a) Detected SST Image
20x20 pixel area of interest
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Figure 4.9: First measured image (a) Detected image, (b) Result of hypothesis one, (c)

Result of hypothesis two. The log-likelihood of hypothesis two was larger and therefore a

binary was detected.
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4.3.2 Second image: two points in close proximity.

The second image is of most interest. Here the star from the previous frame has

moved right next to the satellite so it would appear as if they are one bright object. The

multi-hypothesis algorithm successfully determined that this is a binary.
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(a) Detected SST Image
20x20 pixel area of interest
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Figure 4.10: First measured image (a) Detected image, (b) Result of hypothesis one, (c)

Result of hypothesis two. The log-likelihood of hypothesis two was larger and therefore a

binary was detected.
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4.3.3 Third image: two points touching.

The third frame in this sequence is a lot like the first, where there are clearly two

binaries in the region of interest. The multi-hypothesis process correctly detected the

binary.
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(a) Detected SST Image
20x20 pixel area of interest
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Figure 4.11: Third measured image (a) Detected image, (b) Result of hypothesis one, (c)

Result of hypothesis two. The log-likelihood of hypothesis two was larger and therefore a

binary was detected.
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4.3.4 Fourth image: single point.

The last image in this sequence shows the star has passed out of the region of interest.

Here log-likelihood for hypothesis one should be larger. The result of processing this image

was the log-likelihood of hypothesis two did not detect any combination of two points that

rose above the threshold for detection, so it remained defaulted to zero. Whereas the log-

likelihood of hypothesis one correctly detected the single object.
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(a) Detected SST Image
20x20 pixel area of interest
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Figure 4.12: Forth measured image (a) Detected image, (b) Result of hypothesis one, (c)

Result of hypothesis two. The log-likelihood of hypothesis one was greater and so a binary

was not detected.
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4.3.5 Measured data result summary.

These results demonstrate that the multi-hypothesis algorithm can properly differen-

tiate between a single point source and a binary point source in the images shown above.

The processing time on a laptop with two gigahertz processor running Matlab™was ap-

proximately six milliseconds per image. This also demonstrates the potential to run this

detection algorithm in near-real-time to flag images with potential binaries in an area of

interest. These flagged image locations can then be revisited by higher resolution imaging

if desired.
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V. Future work

5.1 Summary

Binary detection is an important area of interest both inside and outside the Air Force.

Traditional binary detection at geosynchronous orbiting heights is difficult when objects

are too close and/or blurred by atmospheric effects. Many post processing techniques have

been implemented to enhance the resolution and thereby increase the ability to detect bi-

naries. This thesis has proposed a different approach that focuses instead on assuming an

image contains either zero, one, or two point sources. Based of these hypothesis a log-

likelihood can be calculated which can be used for binary detection.

Chapter two reviewed current binary detection techniques along with a brief intro-

duction about multi-hypothesis testing. Chapter three provided the derivations used in this

thesis along with a description of the simulated and measured tests conducted. Chapter

four provided the test results, comparing an imaging by correlation detection method with

the multi-hypothesis algorithm.

Multi-hypothesis testing capitalizes on the additional data contained in the assump-

tions which form each hypothesis. This additional information allows the derivation of a

binary detection algorithm with positive simulation results when compared with an imaging

by correlation detection method. If an objective of an imaging system is to search for and

identify binaries then implementing a multi-hypothesis algorithm can provide increased

detection performance because of the additional information contained in the hypothesis.

5.2 Future work

This thesis focused on actual image data. An early objective that was not realized

in this research was to use multi-hypothesis testing on the spatial frequency information.

A unique cosine fringe pattern in the spatial frequency information of an image denotes
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a binary is present. However, sometimes this cosine pattern cannot be seen. Deriving a

multi-hypothesis algorithm that assumes the spatial frequency data was formed by zero,

one, or two point sources could allow better detection than current methods.

Another area of more research is how well this method performs when using multi-

frame imaging techniques. The simulation tests in this thesis used only single short

exposure images. Given the positive performance from these short exposure tests does

create a suspicion that multi-frame imaging techniques will only enhance the performance

even more as noise and atmospheric effects are removed through averaging many frames.

Sub-pixel detection was also not explored. When viewing objects that fit inside a

single pixel in the detection plane, if the object is not centered on the pixel it will split the

photon count into two or more adjacent pixels. Adding a multi-hypothesis binary detection

that accounts for sub-pixel locations is a potential area for more investigation.

In a similar vein, detection of more than two objects might be of interest. Having

hypothesis calculations for zero, one, two, and more than two would allow not only binary

but also cluster detection in a given area of interest. This is also an important part of the

Air Force’s mission for space surveillance.

74



Bibliography

[1] Acton, DS and RC Smithson. “Solar imaging with a segmented adaptive mirror”.
Applied optics, 31(16):3161–3169, 1992.

[2] Ayers, GR, MJ Northcott, and JC Dainty. “Knox-Thompson and triple-correlation
imaging through atmpshperic turbulence”. JOSA A, 5(7):963–985, 1988.

[3] Bates, RHT. “Astronomical speckle imaging”. Physics Reports, 90(4):203–297, 1982.

[4] Beletic, James W. “Deterministic photon bias in speckle imaging”. Optics
Communications, 71(6):337–340, 1989.

[5] Campisi, Patrizio and Karen Egiazarian. Blind image deconvolution: theory and
applications. CRC press, 2007.

[6] Charbonneau, David, Timothy M. Brown, David W. Latham, and MIchel Mayor.
“Detection of Planetary Transits Across a Sun-like Star”. 529(1):L45, 2000. URL
http://stacks.iop.org/1538-4357/529/i=1/a=L45.

[7] Collins, Graham P. “Making stars to see stars: DOD adaptive optics work is
declassified”. Physics Today, 45:17, 1992.

[8] Ealey, Mark A. and John A. Wellman. “Deformable mirrors: design fundamentals,
key performance specifications, and parametric trades”. San Diego-DL tentative, 36–
51. International Society for Optics and Photonics, 1992.

[9] Foy, R. and A. Labeyrie. “Letter to the Editor Feasibility of adaptive telescope with
laser probe”. Astron. Astrophys, 152:L29–L31, 1985.

[10] Fugate, Robert Q. “Laser beacon adaptive optics”. Optics and Photonics News,
4(6):14–19, 1993.

[11] Gardner, Chester S., Byron M. Welsh, and Laird A. Thompson. “Design and
performance analysis of adaptive optical telescopes using lasing guide stars”.
78(11):1721–1743, 1990.

[12] Gaskill, Jack D. Linear systems, Fourier transforms, and optics. IET, 1978.

[13] Goodman, J. W. Statistical Optics. Wiley, John and Sons, Inc, New York, NY, 1985.

[14] Goodman, J. W. Introduction to Fourier Optics. Roberts and Company Publishers,
Greenwood Village, CO, 2005.

[15] Happer, W., GJ MacDonald, CE Max, and FJ Dyson. “Atmospheric-turbulence
compensation by resonant optical backscattering from the sodium layer in the upper
atmosphere”. JOSA A, 11(1):263–276, 1994.

75



[16] Hardy, John W. “Active optics: a new technology for the control of light”.
Proceedings of the IEEE, 66(6):651–697, 1978.

[17] Hulburd, Bill. “Segmented mirrors for atmospheric compensation”. 1989 Intl
Congress on Optical Science and Engineering, 42–51. International Society for
Optics and Photonics, 1989.

[18] Knox, Keith T. and Brian J. Thompson. “Recovery of images from atmospherically
degraded short-exposure photographs”. The astrophysical journal, 193:L45–L48,
1974.

[19] Kundur, Deepa and Dimitrios Hatzinakos. “Blind image deconvolution”. Signal
Processing Magazine, IEEE, 13(3):43–64, 1996.

[20] Labeyrie, Antoine. “Attainment of Diffraction Limited Resolution in Large
Telescopes by Fourier Analysing Speckle Patterns in Star Images”.

[21] Lawrence, TW, DM Goodman, EM Johansson, and JP Fitch. “Speckle imaging of
satellites at the us air force maui optical station”. Applied optics, 31(29):6307–6321,
1992.

[22] Lohmann, Adolf W., Gerd Weigelt, and Bernhard Wirnitzer. “Speckle masking in
astronomy: triple correlation theory and applications”. Applied Optics, 22(24):4028–
4037, 1983.

[23] Marcy, Geoffrey W., R. Paul Butler, Debra Fischer, Steven S. Vogt, Jack J. Lissauer,
and Eugenio J. Rivera. “A Pair of Resonant Planets Orbiting GJ 876”. The
Astrophysical Journal, 556(1):296, 2001. URL http://stacks.iop.org/0004-637X/556/

i=1/a=296.

[24] Matson, Charles L. “Weighted-least-squares phase reconstruction from the bispec-
trum”. JOSA A, 8(12):1905–1913, 1991.

[25] Meng, Julian, George JM Aitken, E. Keith Hege, and Jeffrey S. Morgan. “Triple-
correlation subplane reconstruction of photon-address stellar images”. JOSA A,
7(7):1243–1250, 1990.

[26] Northcott, MJ, GR Ayers, and JC Dainty. “Algorithms for image reconstruction from
photon-limited data using the triple correlation”. JOSA A, 5(7):986–992, 1988.

[27] Phillips, James D. and Stephen C. Cain. “Joint maximum likelihood estimator for
pupil and image plane data”. Optical Engineering, 47(2):026002–026002, 2008.

[28] Ribak, Erez N. “Deformable mirrors”. NATO ASI Series C Mathematical and
Physical Sciences-Advanced Study Institute, 423:149–162, 1994.

[29] Richmond, Richard D. and Stephen C. Cain. Direct-detection LADAR systems. SPIE
Press, 2010.

76



[30] Roddier, Nicolas A. “Atmospheric wavefront simulation using Zernike polynomials”.
Optical Engineering, 29(10):1174–1180, 1990.

[31] Roggemann, M. C. and B. M. Welsh. Imaging Through Turbulence. CRC Press LLC,
Boca Raton, FL, 1996.

[32] Rousset, Gerard. “Wave-front sensors”. Adaptive optics in astronomy, 1:91, 1999.

[33] Schmidt, J. D. Numerical Simulation of Optical Wave Propigation With examples in
MATLAB© . SPIE Press, Bellingham, WA, 2010.

[34] Schulz, T. J. and D. L. Snyder. “Image recovery from correlations”. 1992.

[35] Schulz, Timothy J. “Multiframe blind deconvolution of astronomical images”. JOSA
A, 10(5):1064–1073, 1993.

[36] Schwartz, C., E. Ribak, and SG Lipson. “Bimorph adaptive mirrors and curvature
sensing”. JOSA A, 11(2):895–902, 1994.

[37] Thompson, Laird A. “Adaptive optics in astronomy”. Physics Today, 47:24, 1994.

[38] Troxel, Steven E., Byron M. Welsh, and Michael C. Roggemann. “Off-axis optical
transfer function calculations in an adaptive-optics system by means of a diffraction
calculation for weak index fluctuations”. JOSA A, 11(7):2100–2111, 1994.

[39] Troxel, Steven E., Byron M. Welsh, and Michael C. Roggemann. “Anisoplanatism
effects on signal-to-noise ratio performance of adaptive optical systems”. JOSA A,
12(3):570–577, 1995.

[40] Tyson, Robert. Principles of adaptive optics. CRC Press, 2010.

77



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2013–Mar 2014

Binary Detection using Multi-Hypothesis Log-Likelihood,
Image Processing

Gessel, Brent H., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-14-M-34

Lt Col Travis Blake
Space Systems (DARPA/TTO)
675 North Randolph Street
Arlington, VA 22203-2114
(703)812-1963

DARPA/TTO

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

One of the United States Air Force missions is to track space objects. Finding planets, stars, and other natural and
synthetic objects are all impacted by how well the tools of measurement can distinguish between these objects when
they are in close proximity. In astronomy, the term binary commonly refers to two closely spaced objects. Splitting a
binary occurs when two objects are successfully detected. The physics of light, atmospheric distortion, and measurement
imperfections can make binary detection a challenge.
Binary detection using various post processing techniques can significantly increase the probability of detection. This
paper explores the potential of using a multi-hypothesis approach. Each hypothesis assumes one two or no points exists
in a given image. The log-likelihood of each hypothesis are compared to obtain detection results. Both simulated and
measured data are used to demonstrate performance with various amounts of atmosphere, and signal to noise ratios.
Initial results show a significant improvement when compared to a detection via imaging by correlation. More work exists
to compare this technique to other binary detection algorithms and to explore cluster detection.

15. SUBJECT TERMS

binary detection, image post processing, correlation

U U U UU 90

Dr. Stephen C. Cain (ENG)

(937) 255-3636 x4716 Stephen.Cain@afit.edu


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Binary detection
	Space situational awareness
	Research objectives
	Organization

	Background
	Post-Process Imaging
	Multi-Hypothesis Detection
	Chapter Summary

	Methodology
	Derivation of multi-hypothesis algorithms
	Software implementation
	Simulation test model
	Measured data test model

	Results
	Multi-hypothesis binary detection simulation results
	Comparison with imaging by correlation technique
	Measured data processing results

	Future work
	Summary
	Future work

	Bibliography

